Terrestrial Ecosystem Carbon Exchange

• Objectives
 – Terrestrial Ecosystem Carbon Cycling
 • Flux and storage of C across the SPAC in terrestrial ecosystems
 – Response of Tropical Forests to Rising Temperature
 • Hawaiian Tropical Montane Wet Forests as a Model Study System
Why should we care about C cycling?

- C is the energy currency of all ecosystems
 - Plant (autotrophic) production is the base of almost all food/energy pyramids
 - Underlies all ecosystem goods & services
- Plant C cycling, to a large extent, controls atmospheric CO$_2$ concentrations (i.e., climate)
 - 3-4x as much C in terrestrial ecosystems as the atmosphere
 - Tropical forests account for ~25% of global terrestrial biomass and ~35% of global terrestrial productivity
- C is fundamental to soil processes (i.e., SOM)
 - Belowground resources are a primary control over all ecosystem processes

Terrestrial Ecosystem Carbon Exchange

- Terrestrial metabolism: the “breathing” of Earth

![Graph showing terrestrial ecosystem carbon exchange](image)
Terrestrial Ecosystem Carbon Exchange

- Key to understanding biological C cycling
 - Law of Conservation of Mass
 - mass can neither be created nor destroyed, although it may be rearranged in space, or it may be changed in form
 - Inputs = Outputs + \(\Delta\)Storage
 - Inputs - Outputs = \(\Delta\)Storage
 - C that enters an ecosystem can change form, be stored, or be released back to the atmosphere
 - Stored C can move from one pool to another
 - C cycling best understood in terms of pools (storage) and fluxes (flows)
Terrestrial Ecosystem Carbon Exchange

- C enters via photosynthesis
 - Gross Primary Production (GPP)
 - Total C input via photosynthesis
 1. Accumulates in ecosystems (C pools/storage/sequestration) as:
 (a) plant biomass; (b) SOM & microbial biomass; or (c) animal biomass
 2. Returned to the atmosphere via
 (a) respiration (R; autotrophic or heterotrophic); (b) VOC emissions; or (c) disturbance
 3. Leached from or transferred laterally to another ecosystem

The C Bank Account

How do you measure GPP?
- Measure & Sum individual components
 - Need measurements of all individual components
 - Only ~30-40 studies globally

Chapin et al. (2011)
Terrestrial Ecosystem Carbon Exchange

- Net primary production (NPP)
 - NPP = GPP – R_{plant}
 - Net annual C gain (or loss) by plants
 - ANPP, ANPP$_{\text{wood}}$, ANPP$_{\text{foliage}}$, BNPP, etc.
 - Units of C (or biomass) / unit area / unit time
 - g C m$^{-2}$ yr$^{-1}$

\[\text{Net annual C gain (or loss) by plants} = \text{ANPP, ANPP}_{\text{wood}}, \text{ANPP}_{\text{foliage}}, \text{BNPP, etc.} \]

Terrestrial Ecosystem Carbon Exchange

- Measuring NPP
 - NPP = Δbiomass + litterfall
 - Biomass from allometric equations
 - Litterfall from litter traps
 - Need to account for biomass increment and loss because plant tissue is continually shed
 - NPP$_{\text{foliage}}$ = ΔLeaf Bio. + Leaf Litter
 - NPP$_{\text{wood}}$ = ΔWood Bio. + Wood Litter

\[\text{NPP} = \Delta \text{biomass} + \text{litterfall} \]

\[\Delta \text{biomass} = \text{Biomass from allometric equations} \]

\[\text{litterfall} = \text{Litterfall from litter traps} \]

\[\Delta \text{Leaf Bio.} + \text{Leaf Litter} \]

\[\Delta \text{Wood Bio.} + \text{Wood Litter} \]
Terrestrial Ecosystem Carbon Exchange

• R_{growth} (growth/construction)
 – Total C cost = C in new biomass + C used to generate that biomass
 – Varies widely by compound
 • Function of concentration & cost
 • Protein rich (leaves), structural (wood), and defense
 – How do you measure R_{growth}?
 • $\sim 0.25 \times$ NPP
 – Total C cost = ~ 1.23g CHO per 1 g of biomass produced

Terrestrial Ecosystem Carbon Exchange

• R_{maint} (maintenance of existing biomass)
 – Repair of non-growing tissues & ion transport
 • Protein turnover ($\sim 85\%$)
 • Membrane lipids
 • R_{ion} (ion transport across membranes)
 – How do you measure R_{maint}?
 • Correlations with temperature and/or N content
Terrestrial Ecosystem Carbon Exchange

- **TBCF (Total Belowground Carbon Flux)**
 - Measuring BNPP and R_{below} is exceedingly difficult
 - Would also miss a lot of C that goes to other components
 - TBCF is the total amount of C that plants send belowground
 - Root production + root respiration + C to symbionts + rhizodeposition
 - Based on conservation of mass
 - Direct measurement of all C inputs, outputs & Δstorage except what can’t be directly measured
 - $\text{TBCF} = F_s - F_A + (\Delta C_s + \Delta C_R + \Delta C_L)$

Terrestrial Ecosystem Carbon Exchange

- **TBCF (Total Belowground Carbon Flux)**
 - TBCF is as easy as taking a bath…

\[
\text{TBCF} = F_s - F_A + (\Delta C_s + \Delta C_R + \Delta C_L)
\]

Giardina & Ryan (2002)
Terrestrial Ecosystem Carbon Exchange

- Net ecosystem production (NEP)
 - Net annual C gain (or loss) by an ecosystem (over short time scales)
 - \(\text{NEP} = \text{GPP} - R_{\text{ecosystem}} \)
 - \(\text{NEP} = \text{NPP} - R_{\text{hetero}} \)
 - ~Same as NEE
 - What is missing?

Terrestrial Ecosystem Carbon Exchange

- Net Ecosystem Carbon Balance (NECB)
 - Net annual C gain (or loss) by an ecosystem (over longer time scales)
 - \(\text{NECB} = \text{GPP} - R_{\text{ecosystem}} - (F_{\text{disturb}} + F_{\text{leach}} + F_{\text{emissions}}) \)
 - Both natural & anthropogenic disturbances
 - Best way to estimate C sequestration

Chapin et al. (2011)
Terrestrial Ecosystem Carbon Exchange

• C storage in terrestrial ecosystems is C that is not in the atmosphere
 – C storage is ultimately what many managers & policy makers are interested in
 – Dynamic balance between the input, output and partitioning of C
 • C Partitioning is the fraction of GPP that goes to a particular component
• Funding
 – National Science Foundation; USDA Forest Service, PSW Research Station; University of Hawaii at Manoa, College of Tropical Agriculture and Human Resources

• People
 – Collaborators: Drs. Christian Giardina, Paul Selmants, Susan Crow, Greg Asner, Kristen Freeman, etc.
 – Technicians: Mike Long, Kevin Kaneshiro, Scott Laursen, Kainana Francisco, Kaimi Moraes, Rachel Moseley, Caitlin French, Riley DeMattos, Makalani Spina, etc.
 – Students: Darcey Iwashita, Lori Bothwell, Jeremy Albano, Joey Quitan, Olivia Schubert, Sue Pierre, etc.

Climate Change in the Tropics

• Climate is already changing in Hawaii, and throughout the tropics

Giambelluca et al. 2008
Elison Timm et al. 2015
• Evidence exists that rising MAT will alter ecosystem C cycling and storage
 – C input ↑
 – C output ↑
 – Ecosystem C storage ↔
 • Shift from soil to vegetation
 – Cross-site syntheses & elevation transects provide valuable insights
 • Typically confounded by changes in vegetation, substrate, H₂O availability, disturbance, etc.

• Impact of rising MAT for tropical forest C flux & storage?
 – One of the biggest unknowns regarding climate change & terrestrial ecosystems (Wood et al. 2012)
 • Positive feedback/forcing to climate change?
 • "Notable lack of data...to resolve this issue with certainty"
 • Particularly poor understanding of belowground dynamics
 • In situ manipulations; long-term experiments; incorporating scales & diversity
 – Environmental gradients provide valuable insights (Malhi et al. 2010)
 • Long-term integrated response to MAT
Tropical Forest C Cycling with rising MAT

- Hawaiian tropical montane wet forests as a model study system to quantify the impacts of rising MAT on tropical forest C cycling
 - How will the input, partitioning, loss and storage of C respond to rising MAT in tropical forests?

Tropical Forest C Cycling with rising MAT

- 5.2°C MAT gradient (13-18.2°C; 800-1600 m.a.s.l.)
 - C budgets in intact, closed-canopy tropical montane wet forests (n=9)
 - C input, partitioning, loss, & storage

- Model study system
 - Constant:
 - Vegetation
 - Disturbance history
 - Substrate type & age
 - Soil water availability
Hawaiian Islands as a model study system

- Characteristics of Hawaii as a model study system (from P. Vitousek, Fall 2014 NREM Seminar Series)
 - "Ideal compromise between complexity and tractability"
 - Relative simplicity (basalt origin; vegetation)
 - Continuous gradients (substrate; temperature/elevation; precipitation)
 - Distinct rock chemistry (isotopic signal distinct from ocean & crust)

Tropical Forest C Cycling with rising MAT

- A model study system
 - Constant species composition
 - ~85% of total basal area in *M. polymorpha* (overstory) & *C. trigynum* (mid-story)
Tropical Forest C Cycling with rising MAT

- A model study system
 - Maximum aboveground biomass for a given elevation
 - Constant disturbance history (moderately aggrading mature forest)

- A model study system
 - Constant substrate type and age
 - 20k yr tephra-derived Acrudoxic Hydrudands
Tropical Forest C Cycling with rising MAT

• A model study system
 • Constant plant available water
 • MAP varies from 3000 to 4000 mm, but higher MAP at lower elevations where ET is higher
 • Soil VWC high & constant year-round

• Hypothesis 1
 – The flux of C into and out of tropical montane forests increases with rising temperature
 • H₂O is not limiting; No change in disturbance regime

(Litton & Giardina, 2008) (Bond-Lamberty & Thomson, 2010)
Tropical Forest C Cycling with rising MAT

• Aboveground C fluxes increase with MAT
 – Litterfall & ANPP increase with rising MAT
 – GPP increases with rising MAT
 • Agrees well with global relationship (Litton & Giardina 2008)

![Graphs showing relationships between MAT and Litterfall, ANPP, and GPP](Giardina et al., 2014) (Litton et al., unpublished data) (Litton et al., unpublished data)

Tropical Forest C Cycling with rising MAT

• Belowground C fluxes increase with MAT
 – Both C flux out of & into soil increase with rising MAT

![Graphs showing relationships between MAT and Soil CO2 Efflux and TBCF](Litton et al., 2011) (Giardina et al., 2014)
Tropical Forest C Cycling with rising MAT

• **Hypothesis 2**
 – Ecosystem carbon storage will remain constant with temperature
 – Fraction of ecosystem C in live biomass will increase with temperature

- Live Biomass C storage
 – No relationship with MAT
 – Highest live biomass at ~16.5°C (Larjavaara & Muller-Landau 2011)

(Raich et al., 2006)

(Selmants et al., 2014)
Tropical Forest C Cycling with rising MAT

- Detrital C storage
 - SOC constant with MAT
 - CWD and forest floor C ↓ with MAT

(Selmants et al. 2014)

Tropical Forest C Cycling with rising MAT

- Detrital C storage
 - Total detrital C ↓ with MAT
 - Fraction of detrital C in SOC ↑ with MAT

(Selmants et al., 2014)
Tropical Forest C Cycling with rising MAT

- Ecosystem C storage
 - Total ecosystem C ↔ with MAT
 - No shift between C in soil vs. live vegetation

Tropical Forest C Cycling with rising MAT

- In tropical wet forests, increasing MAT will:
 - Increase ecosystem C cycling (i.e., C flux into and out of above- and belowground components)
 - Not change ecosystem C storage
 - Increased loss of C with rising MAT is simply a result of increased input of C
 - No trade-off between live and detrital C with MAT

(Selmants et al., 2014)